Lurking inferential monsters?
 Quantifying Selection Bias in Evaluations of School Programs

Ben Weidmann
Harvard Graduate School of Education
\& Education Endowment Foundation

SREE
Sep 2020
Weidmann, Ben, and Luke Miratrix. "Lurking Inferential Monsters: Quantifying Selection Bias in Evaluations of School Programs." Journal of Policy Analysis and Management.

Within-study comparisons

$\hat{\beta}=\hat{\tau}_{\text {Non-RCT }}-\hat{\tau}_{R C T}$

$$
\hat{\beta}=\bar{Y}_{C T}-\bar{Y}_{C O}
$$

Data

Sources

Data

Archive of experiments (RCTs) - Information on which schools/pupils participated in experiments

Pupil

- Performance tables \qquad Academic attainment in maths and English (outcomes=grade 6; pre-test = grade 2)
- Pupil Census - Demographics (age, rurality, gender)

School

- Performance tables Average attainment (level and change over time)
- School census School size \& type (academy status, \# of pupils)
- School workforce Staffing (e.g. teacher:pupil ratio)
- School finance Budget ($£ /$ pupil; spending on 'outside services')
- Ofsted

Neighbourhood

- Indices of deprivation \qquad Most recent Ofsted evaluation [Ofsted = official inspection body]

Children Deprivation Index (IDACI), crime, housing

Interventions (1 of 2)

Intervention	ID	Brief description of intervention	n_schools* (n_pupils)	Reference
Affordable Online Maths Tuition	am	1-on-1 online tutoring, for grade 6's by math graduates in India and Sri Lanka. ~ 45 mins per week for 27 weeks.	$\begin{aligned} & 64 \\ & (3,106) \end{aligned}$	Torgerson et al. (2016)
Changing Mindsets	cm	Professional development course for primary school teachers in how to develop Growth Mindset in pupils.	$\begin{aligned} & 30 \\ & (1,505) \end{aligned}$	Rienzo et al. (2015)
Chess in Schools	chs	Grade 5 students taught chess by experienced chess tutor, instead of music or PE, over 30 weeks.	$\begin{aligned} & \hline 100 \\ & (4,009) \end{aligned}$	Jerrim et al. (2016)
Dialogic Teaching	dt	Grade 5 teachers trained in techniques to encourage dialogue, argument and oral explanation during class time	$\begin{aligned} & 78 \\ & (4,958) \end{aligned}$	Jay et al. (2017)
Flipped Learning	Fl	Grade 5 pupils learn core math content online, outside of class time. Classes were used to reinforce/clarify ideas.	$\begin{aligned} & \hline 24 \\ & (1,214) \end{aligned}$	Rudd, Aguilera, Elliot, and Chambers (2017)
Hampshire Hundreds	hh	Professional development for primary schools teachers in strategies to reduce educational achievement gaps.	$\begin{aligned} & 36 \\ & (2,048) \end{aligned}$	McNally et al. (2014)
Learner Response System	lrs	Handheld devices used in grades 5 and 6, to provide teachers with real-time information about pupil knowledge	$\begin{aligned} & 97 \\ & (3,213) \end{aligned}$	Wiggins, Sawtell, and Jerrim (2017)

Intervention	ID	Brief description of intervention	n_schools* ${ }^{*}$ (n_pupils)	Reference
Magic Breakfast	mb	Providing nutritious breakfast to primary school students for most of the 2014-15 academic year.	$\begin{aligned} & 98 \\ & (4,038) \end{aligned}$	Crawford et al. (2016)
Mind the Gap	mtg	Teacher training and parent workshops (over a 5 week period) to help grade 4 students be more 'meta-cognitive'.	$\begin{aligned} & 45^{* *} \\ & (1,603) \end{aligned}$	Dorsett et al. (2014)
Philosophy for Children	p 4 c	Dialogic teaching of philosophical issues to children in grades 4 and 5, over a period of 11 months.	$\begin{aligned} & 48 \\ & (1,529) \end{aligned}$	Gorard et al. (2015)
ReflectEd	ref	Weekly lessons where grade 5's learn strategies to monitor/manage their own learning (over 6 months)	$\begin{aligned} & 33 \\ & (1,858) \end{aligned}$	Motteram et al. (2016)
Shared Maths	sm	Cross-age peer math tutoring: older pupils (grade 6) work with younger ones (grade 4) for 20 mins per week for 2 years.	$\begin{aligned} & 82 \\ & (3,167) \end{aligned}$	Lloyd et al. (2015)
Talk of the Town	tott	Whole-school intervention to help support the development of children's speech, language and communication.	$\begin{aligned} & 64 \\ & (3,299) \end{aligned}$	Thurston et al. (2016)
Thinking, Doing, Talking Science	ttds	5 day's professional development for grade 5 teachers, with the aim of making science more practical and engaging.	$\begin{aligned} & 42 \\ & (1,513) \end{aligned}$	Hanley et al. (2015)

${ }^{*}$ n_schools (pupils) describes the number of schools and pupils included in the original RCT evaluations at randomization.
**Figures based on the EEF Archive, rather than the published report, as the latter did not include the number of students at randomization.

Estimating selection bias

Naïve bias

- $\beta^{\text {Naive }}$
- Simple contrast between RCT control and observational control
- Initial assessment of how big an issue selection bias might be (Wong et al. 2018)

Bias after conditioning on observables

- $\beta^{\text {Match }}$
- Condition on observables
- For each program, we generate a matched comparison group:
- 1:1 matching
- No replacement
- Mahalanobis distance+ ${ }^{+}$propensity score caliper
- Our goal was to use a method that:
- is common in applied research, rather than something cutting edge
- is computationally cheap (for simulation-based inference)

Estimates of underlying bias

- We compared RCTs to Matching 42 times, and didn't find systematic differences.
- Results were similar for Maths, Reading and Writing outcomes
- Some may be tempted to conclude that "selection bias" isn't a big problem, so long as we're working on school evaluations, with rich admin data...
- ...we argue that this goes too far and that there are limitations to bear in mind:
- Non-radical interventions
- Selection bias is a 'moving target' and needs constant re-checking

Thanks

Questions

Recommendations for the IES/EEF and researchers (along with some ideas for future work)

1. We should do more observational evaluations using resources like the National Pupil Database in England
2. Conduct within-study comparisons as part of follow-up analyses
3. Use within-study comparisons to systematically examine the performance of different non-experimental methods

Existing evidence from schools: not many estimates, but a promising context

Summary of covariates

Category	Label	Level	Description ${ }^{\circ}$	Source*
Student achievement	Achievement_grade 2	Student	Average achievement in reading and math in Grade 2	NPD (Key Stage Achievement) NPD (Key Stage Achievement) NPD (Key Stage Achievement)
	Late	Student	$=1$ if student sits standardized exam a year late	
	Early	Student	$=1$ if student sits standardized exam in a year earlier than expected	
Demographics	Age	Student	Age of student in months	NPD (Pupil Census) NPD (Pupil Census) NPD (Pupil Census)
	Free school meals	Student	$=1$ if student currently gets free school meals	
	Gender	Student	$=1$ if female	
Rurality	Metro	Student	$=1$ if student lives in metro area	NPD (Pupil Census) NPD (Pupil Census) NPD (Pupil Census) NPD (Pupil Census)
	Small_metro	Student	$=1$ if student lives in small metro area	
	Rural	Student	$=1$ if student lives in very rural area	
	Very rural	Student	$=1$ if student lives in very rural area	
School-level Achievement	School_academic_mean	School	Predicted achievement in reading and math in Grade 6 (pre-year)	Modelled (based on NPD) Modelled (based on NPD) Modelled (based on NPD)
	School _academic_growth	School	Ave. annual change in academic achievement in Grade 6 (4 years prior to RCT)	
	School _grade_level_growth	School	Ave. annual change in percent of Grade 6 at grade level (4 years prior to RCT)	
School size and type	Voluntary_school	School	$=1$ if school is a voluntary school (state-funded, often religious)	NPD (School census)
	Academy_sponsor	School	$=1$ if school is a sponsored academy	NPD (School census)
	Academy_converter	School	$=1$ if school is a converted academy	NPD (School census)
	Other_type	School	$=1$ if school type is not described by the types listed above	NPD (School census)
	Ofsted	School	Integer values of 1 (outstanding) to 4 (inadequate)	Ofsted
	School size	School	Total number of students in school in preyear	NPD (Finance)
	Type_secondary	School	$=1$ if secondary school	NPD (School census) NPD (School census) NPD (School census)
	Type_middle	School	$=1$ if school is a middle school	
	Type_both	School	$=1$ if school has primary and high school	
Budget	Income	School	Total income in preyear	NPD (Finance) NPD (Finance)
	Outside budget	School	Pounds spent on outside programs, services, and ICT	
Staffing	TA Percent	School	Proportion of staff who are Teacher Assistants	NPD (Workforce) NPD (Workforce)
	Teacher pupil ratio	School	Pupil teacher ratio in pre-year	
Location variables	Crime	LSOA*	Index of crime	English Indices of Deprivation English Indices of Deprivation English Indices of Deprivation
	Housing	LSOA*	Index of housing quality	
	IDACI*	LSOA*	Omnibus index of disadvantage	

Characterising Bias

First, define $E \bar{Y}_{C O}^{a d j}$ as the adjusted mean comparison outcome:

$$
E \bar{Y}_{C O}^{a d j}=\int \mu_{C O}(x) d F_{C T}(x)
$$

Where $\mu_{C O}(x)=E[Y(0) \mid X=x, T=0, S=0]$
Now, $\beta=E[\hat{\beta}]$

$$
\begin{aligned}
& =E\left[\bar{Y}_{C T}\right]-E\left[\bar{Y}_{C O}\right] \\
& =E\left[\bar{Y}_{C T}\right]-E\left[\bar{Y}_{C O}^{\text {adj }}\right]+E\left[\bar{Y}_{C O}^{\text {adj }}\right]-E\left[\bar{Y}_{C O}\right] \\
& =\Delta_{U}+\Delta_{X}
\end{aligned}
$$

Estimating $\boldsymbol{\beta}^{\text {Match }}$ in more detail

- $\beta^{\text {Match }}$ is a contrast between RCT control, and matched comparison group
- After generating a matched comparison group, we estimate $\beta^{\text {Match }}$ using a regression model
- For each intervention w and outcome k, we fit the following model for pupil i in school j :

$$
\begin{gathered}
\mathrm{Y}_{\mathrm{ijkw}}=\alpha_{j}+\gamma \boldsymbol{X}_{i j}+\beta_{k w}^{M a t c h} S_{j}+\epsilon_{i j k w} \\
\alpha_{j} \sim N\left(\alpha_{0}, \sigma_{\alpha}^{2}\right) \\
\epsilon_{i j k w} \sim N\left(0, \sigma^{2}\right)
\end{gathered}
$$

Meta-analysis

- Observed estimates of selection bias, $\hat{\beta}_{k w}$ are modelled as follows:

$$
\begin{gathered}
\hat{\beta}_{k w} \mid \beta_{k w} \sim N\left(\beta_{k w}, \sigma_{k w}^{2}\right) \\
\beta_{k w} \sim N\left(v, \tau^{2}\right)
\end{gathered}
$$

Where

- $\quad \beta_{k w}$ is the underlying bias. We model this as a random effect that differs across interventions and outcomes. The mean bias is v and the variance is τ^{2}
- Observed estimates of bias deviate from the underlying parameter due to sampling variation, which is captured by $\sigma_{k w}^{2}$
After estimating $\hat{\tau}^{2}$ and \hat{v} we generate empirical Bayes estimates of bias:

$$
\beta_{k w}^{*}=\hat{\lambda}_{k w} \hat{v}+\left(1-\hat{\lambda}_{k w}\right) \hat{\beta}_{k w}
$$

Where: $\hat{\lambda}_{k w}=\frac{\widehat{\sigma}_{k w}^{2}}{\widehat{\sigma}_{k w}^{2}+\hat{\tau}^{2}}$
Finally, we turn these into contrained empirical Bayes $\tilde{\beta}_{k w}$ so that $\operatorname{var}\left(\tilde{\beta}_{k w}\right)=\hat{\tau}^{2}$

Meta-analysis details (part 1)

- We estimate τ using the method of moments approach from Higgins et al. (2009):

$$
\hat{\tau}^{2}=\max \left\{0, \frac{Q-(K-1)}{\sum \hat{\sigma}_{k w}^{-2}-\frac{\sum \hat{\sigma}_{k w}^{-4}}{\sum \hat{\sigma}_{k w}^{-2}}}\right\}
$$

Where:

$$
\begin{gathered}
Q=\sum\left(\hat{\beta}_{k w}-\bar{\beta}\right)^{2} \hat{\sigma}_{k w}^{-2} \\
\bar{\beta}=\frac{\sum \hat{\beta}_{k w} \cdot \hat{\sigma}_{k w}^{-2}}{\sum \hat{\sigma}_{k w}^{-2}}
\end{gathered}
$$

- Then, letting $\widehat{\omega}_{k w}=\left(\hat{\sigma}_{k w}^{2}+\hat{\tau}^{2}\right)^{-1}$, we estimate $\hat{v}=\frac{\sum \widehat{\beta}_{k w} \widehat{\omega}_{k w}}{\sum \widehat{\omega}_{k w}}$
- Estimates of $\hat{\sigma}_{k w}^{2}$ come from our simulations under the null

Meta-analysis details (part 2)

- K is the effective sample size, and is based on the icc of the bias estimates [i.e. the intra-class correlation within cluster, defined as $\hat{\rho}$]
- Specifically:

$$
K=\frac{k w}{1-(k-1) \cdot \hat{\rho}}=\frac{42}{1-(3-1) \cdot 0.56}=19.9
$$

Where our estimate of $\hat{\rho}$ comes from a multilevel model in which $\hat{\beta}_{k w} \sim N\left(\alpha_{w}, \sigma_{e}^{2}\right), \alpha_{w} \sim N\left(\gamma_{0}, \sigma_{a}^{2}\right)$, and $\hat{\rho}=\frac{\widehat{\sigma}_{a}^{2}}{\widehat{\sigma}_{a}^{2}+\hat{\sigma}_{e}^{2}}$.

- Once we have estimates of $\hat{\tau}$ and \hat{v} we get simple empirical Bayes estimates (shrinkage estimates):

$$
\begin{gathered}
\beta_{k w}^{*}=\hat{\lambda}_{k w} \hat{v}+\left(1-\hat{\lambda}_{k w}\right) \hat{\beta}_{k w} \\
\hat{\lambda}_{k w}=\frac{\partial_{k w}^{2}}{\hat{\sigma}_{k w}^{2}+\hat{\tau}^{2}}
\end{gathered}
$$

- We then scale the $\beta_{k w}^{*}$ so that $\operatorname{var}\left(\beta_{k w}^{*}\right)=\hat{\tau}^{2}$

Meta-analysis: sensitivity check

- There don't appear to be differences across outcomes (maths, reading writing)
- So, as a sensitivity check, we re-run our meta-analysis treating each intervention as 1 -unit

$$
\hat{\beta}_{w}=\frac{1}{3} \sum \hat{\beta}_{k w} \quad \text { and } \quad \hat{\sigma}_{w}=\frac{1}{3} \sum \hat{\sigma}_{k w}
$$

- We use the same Method-of-Moments approach (but now $\mathrm{K}=14$).
- The estimated value of Q is smaller than $(K-1)$, so the MoM estimate of $\hat{\tau}^{2}$ at the intervention level defaults zero, as

$$
\hat{\tau}^{2}=\max \left\{0, \frac{Q-(K-1)}{\sum \hat{\sigma}_{w}^{-2}-\frac{\sum \hat{\sigma}_{w}^{-4}}{\sum \hat{\sigma}_{w}^{-2}}}\right\}
$$

- The 95 percent confidence interval of $\hat{\tau}^{2}$ using is [0,0.05], which we generate using test inversion (a la Weiss 2017)

Null hypothesis testing

