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Introduction 

Large-scale data sets usually use complex sampling design such as unequal probabilities 

of selection, clustering to collect data to save time and money. This leads to the necessity to 

incorporate sampling weights into multilevel models in order to obtain accurate estimates and 

valid inferences. However, the weighted multilevel models have been lately developed and 

minimal guidance is left on how to use sampling weights in multilevel models and which method 

is most appropriate.  

In this paper, the following research questions are addressed: 

1. How do MPML estimators differ from unweighted estimator in multilevel models in the 

informative and non-informative sampling designs in terms of relative bias, root mean 

square error and 95% confidence interval coverage rate? 

2. How does intraclass correlation influence the performance of estimators under the 

informative and non-informative condition in terms of relative bias, root mean square 

error and 95% confidence interval coverage rate? 

 

Theoretical Background 

Multilevel Pseudo-Maximum Likelihood (MPML) Estimation Method 

MPML methods with different scaling techniques are used in two-level random intercept 

models. 

The MPML estimates    =           are defined as the parameters to be estimated for the 

fixed effects for two levels respectively, and the population likelihood function is directly 

estimated by weighting the sampling likelihood function, 

              
         

                  
       

                
       

where    is the cluster-specific random effect;     is individual-level covariates and    the cluster 

level covariates;                  is the density function of the response variable     and 

            the density function of   ;    and      are the cluster-level and individual-level 

weights respectively,     and     the scaling factors for the cluster-level and individual level 

sampling weights, respectively.  

Scaling 

Scaling is the primary tool for bias reduction. Two scaling techniques are introduced in 

the present study: effective cluster scaling and cluster scaling method. Pfeffermann et al. (1998) 

specified them as follows 
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where     is the number of sample units in jth cluster.  

 

Methods 

Monte Carlo simulations are applied and the simulation design is as follows:  

Table 1. Simulation Design 

 

The data are generated using the following model: 

    = 17.43 + 0.91*Female + 1.06*SES + 0.92*Pretest + 1.04*Rural +    +    . 

Following Cai (2013), Asparouhov (2006) and Koziol et al. (2017), Poisson sampling is 

used to select schools and individuals. The jth school is selected with probability: 

prob (Ij = 1) = 
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The ith student within the selected jth school with probability: 

prob (Ii|j = 1) = 
 

        
    
 
 
      

                                                                                              

where the      and      equal     and     respectively, and are rescaled to have a variance of 2.  

Under the non-informative sampling condition, jth school is selected with probability of 

prob (Ij = 1) = 
 

        
   

 
      

 .                                                                                                                   

The ith student in the jth school is selected with probability of  

prob (Ii|j = 1) = 
 

        
   
 
 
      

                                                                                             

where     ~ N (0, 2) and    
 
 ~ N (0, 2) and are not related to any variables in the model.  



The simulation procedure is repeated 1000 times. Relative bias, root mean square error, 

and 95% confidence interval coverage rate are used to evaluate the quality of the estimators 

performance.  

Results 

Results for intercept and variance components estimation are reported here. 

Substantial differences are found among these four estimation methods. In terms of bias, 

in the informative design, Figure 1 shows that the weighted estimators performs equally well and 

better than the unweighted for the intercept, whereas the cluster scaling estimator performs the 

best for the student-level variance. The unweighted estimator works the best for school-level 

variance estimation. In the non-informative design, Figure 2 indicates that the unweighted 

estimator performs the best or the second best for all of them. 

In terms of RMSE, Figure 3 shows that including sampling weights decreases it for the 

intercept and student-level variance and increases it for the school-level variance in the 

informative design. However, Figure 4 shows that it increases the RMSE for all of them in the 

non-informative design. Therefore, the unweighted method works the most efficiently in the non-

informative design.  

Figure 5 shows that the weighted methods give better coverage rates for the intercept and 

student-level variance, but unweighted method does for school-level variance in the informative 

design. In the non-informative setting, Figure 6 shows that the unweighted method gives the best 

coverage rate for all the parameter estimates.  

Tentatively, the cluster scaling estimator and effective scaling estimator might be 

preferred in the informative condition, while unweighted estimator does in the non-informative 

design. 

 

ICC is one of the factors influencing the estimation quality (e.g., Asparouhov & Muth  n, 

2006; Kova  evi   & Rai, 2003). Figure 1-6 show that, the ICC affects relative bias and RMSE, 

but is not sensitive to coverage rate. As the ICC increases, the bias for student-level variance 

increases and the bias for school-level variance decreases in both conditions. These changes are 

obvious for school-level variance, but not for student-level variance. No monotonic patterns for 

the relative bias are found for the intercept in the informative condition, but clear patterns are in 

the non-informative design. 

RMSE shows the similar patterns in both conditions for all the parameters except the 

unweighted estimator for the intercept. As the ICC increases, the RMSE decreases for the 

student-level variance, and increases for the school-level variance with all the four estimators. 

 

Discussions and Future Research 

Not all previous findings are confirmed in the current study. It is inferred that checking 

the informativeness of sampling design is necessary, because it will determine whether sampling 

weights should be employed. Second, researchers should examine the ICC and evaluate the 

magnitude and significance of variance components to determine whether multilevel modeling is 

necessary.  

There are several limitations in this study. The primary limitation is that only a simple 

linear random-intercept model is applied. Second, different techniques can be adopted for 

weights, for example, trimming. Third, more levels of informativeness can be considered to offer 



a clearer picture under which condition, the estimates are biased. Above all, future research is 

needed to enhance weighted multilevel models. 
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Appendices: Figures 

Figure 1. Relative bias (%) for intercept and variance components in the informative design 

 

Figure 2. Relative bias (%) for intercept and variance components in the non-informative design 



Figure 3. RMSE for intercept and variance components in the informative design 

 

 

Figure 4. RMSE for intercept and variance components in the non-informative design 

 

 



 

Figure 5. Coverage rate for intercept and variance components in the informative design 
 

 
Figure 6. Coverage rate for intercept and variance components in the non-informative design 
 

 

 


