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1 Background/Context

It is a common belief that school districts have an impact on real estate price, as parents are
willing to pay more to live in districts with better schools. In this project we ask: can we
measure the discontinuous jump in house prices across a border separating school districts?

This type of question is perhaps best answered with a Geographic Regression Discontinu-
ity Design (GeoRDDs) (e.g. Keele and Titiunik, 2015; Keele et al., 2015) a type of Regression
Discontinuity Design (see, e.g., Thistlethwaite and Campbell (1960); Hahn et al. (2001); Im-
bens and Lemieux (2008) for core and overview papers or Matsudaira (2008); Ludwig and
Miller (2007); Li et al. (2015) for examples in education) tailored to the multidimensional
nature of a spatial setting such as this one. GeoRDDs arise when a treatment is assigned
to one region, but not to another adjacent region. For outcomes that vary spatially, simple
direct comparison units on either side of the boundary is invalid due to spatial confounding.
However, under smoothness assumptions, we can account for this confounding and extract
a natural experiment.

2 Purpose/Objective/Research Question

Previous research has focused on extending methods developed for 1D RDDs to GeoRDDs.
E.g., some have used the signed distance from the border as the forcing variable in a 1D RDD
(Martorell, 2004; Robinson, 2011; Cohodes and Goodman, 2012), but the resulting estimator
is spatially confounded. In this work, we emphasize the importance of the geographical aspect
of the problem, and therefore draw from the spatial statistics literature, which brings a rich
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set of tools designed to model spatial correlations. In particular, we use Gaussian process
regression (GPR, or kriging in the spatial statistics literature) to fit the smooth surfaces to
the outcomes. This models the entire response surface (Papay et al., 2011; Dee, 2012; Papay
et al., 2014), but hopefully with less structure to avoid misspecification.

Overall, we aim to generate an inferential approach that adheres to the core principle of
an RDD by extrapolating, with local estimates of trend, units on either side of a boundary
to the boundary itself without strong overall modeling assumptions. Even with this piece
in place, several difficult questions remain: what is the estimand of interest? How should
different points on the boundary be weighted appropriately? As part of this project we
carefully think through the implied estimands of different approaches, and argue for careful
attention to possible treatment variation along the border of interest.

3 Data

We use house sales data from New York City. The dataset includes sale price, building class,
and property address. We also obtained files that delineated different sub-districts so we
could locate all houses by what sub-district they were a member of. After cleaning our data
and removing non-family units, we had a resulting dataset of 19,578 sales. See Figure 1

4 Methodology

In a Geographic Regression Discontinuity context, we have impacts along entire boundaries.
These boundaries are the black lines in Figure 1; we might imagine a different differential
price at each point due to spatial trends. Our primary estimand is the local average impact
at point x, where x lies on any point separating our regions of interest:

τ(x) = E[Yi(1)− Yi(0)|Xi1 = x1, Xi2 = x2], where x ∈ B (1)

Our estimand, in other words, is a function.

Our framework for the estimation of τ(x) proceeds in three steps: (1) fit a smooth
surface on either side of the border, (2) extrapolate the surfaces to the border, and (3) take
the difference of the two extrapolations to estimate the treatment effect along the border.
To do this we use Gaussian process regression, extending the use of Bayesian approaches in
RDDs of Branson et al. (2019). Define µT (x) ≡ E[Yi(1)|X = x] and µC(x) ≡ E[Yi(0)|X = x]
as the mean response functions for treatment and control located at some point X = x,
respectively. These are the unknown functions we would like to estimate. We then assume
that the treatment and control responses are generated as

Yi(1) = µT (Xi) + εiT , and Yi(0) = µC(Xi) + εiC , where

εiT
iid∼ N(0, σ2

yT ), and εiC
iid∼ N(0, σ2

yC)
(2)
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Figure 1: Map of property sales in New York City. Each dot is a sale, and its color indicates
the price per square foot. White crosses indicate sales of properties with missing square
footage, which are therefore excluded from the analysis. School district boundaries are
shown, and each district is labeled by its number.

2016. The dataset includes columns for the sale price, building class, and the address of the

property. Public schools in the city are all part of the City School District of the City of New

York, but the city-wide district is itself divided into 32 sub-districts. It is a common belief

that school districts have an impact on real estate price, as parents are willing to pay more

to live in districts with better schools. We therefore ask: can we measure a discontinuous

jump in house prices across the borders separating school districts?

In order to model the property sale prices, we first need to obtain their locations. We

geocode the address of each sale by merging the sales with NYC’s Pluto database, which

contains X and Y coordinates for each house, identified by its borough, zip code, block and

lot. These coordinates are given in the EPSG:2263 projection in units of feet, which we also
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Figure 1: Map of property sales in New York City. Each dot is a sale, and its color indicates
the price per square foot. White crosses indicate sales of properties with missing square
footage, which are therefore excluded from the analysis. School district boundaries are
shown, and each district is labeled by its number.

Local linear regression methods (classic RDD) make the same above assumption, in addition
to modeling µT (x) and µT (x) via weighted least squares. Instead of specifying a functional
form we place a Gaussian process prior on both of these functions:

µT (x) ∼ GP(mT (X), KT (X,X′))

µC(x) ∼ GP(mC(X), KC(X,X′))
(3)

where we treat the two Gaussian process priors in (3) as independent.1

Once this is done, we aggregate the border-specific impacts to obtain overall averages.
We write this averaging as an intergral along the border, using a weighting function to
appropriately account for varying population density of units and for the curvature of the

1Letting the treatment and control mean response functions be a priori independent is analogous to
fitting two separate local linear regressions—one in the treatment group, one in the control group—which is
by far the common practice in RDDs (Imbens and Lemieux, 2008).
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border itself:

τ pop =

∫
x∈B ρ(x)τ(x)∂x∫

x∈B ρ(x)∂x
(4)

Selecting the weighting function ρ(x) has surprising pitfalls. Simply averaging the treat-
ment effect uniformly along the border yields an estimand that is inefficient and undesirably
sensitive to the topology of the border. For example, regions with lots of wiggles will have
higher weight not due to more units in that region, but simply due to the border itself. We
discuss several options, of which we advocate selecting ρ(x) to be either population density
or overall precision.

To test against the null hypothesis of zero treatment effect along the border, we also
develop a test based on the posterior distribution of the LATE. To ensure good frequentist
properties we calibrate the test, obtaining its distribution under the null model, with a
parametric bootstrap.

5 Findings/Results

Figure 2 gives our results for a single border between two districts. We estimate that the
same house located near the border will on average fetch a significantly and substantively
20% higher price in district 27 than in district 19. However, this effect cannot be attributed
solely to the school district reputation: it also separates Brooklyn and Queens.

We found such significant effects between many of the 26 other pairs of adjacent school
districts examined. However, frequently physical barriers such as parks, commercial zones,
and major roads can separate neighborhoods, keep data away from the borders, and break
the stationarity assumption of the spatial model, which casts doubt on the legitimacy of the
estimated treatment effects.

6 Conclusions

The use of GPR to analyze GeoRDDs gives flexibility and extensibility to the general dis-
continuity approach, and also naturally incorporates spatial correlation which other methods
frequently do not take into account. That being said, one must be careful using these meth-
ods due to the nature of actual geographic data.

Our GPR can be extended in various ways. For example, if the outcomes are binary,
proportions, or counts, then binomial or Poisson likelihoods could be substituted for the
i.i.d. normal likelihood used above. This approach also has important connections to the
two-dimensional RDD designs used in some testing contexts, such as when high stakes con-
sequences happen when either of two different tests is failed (see, e.g., Ou (2010); Papay
et al. (2010); Reardon et al. (2010); Reardon and Robinson (2012); Papay et al. (2014)); this
second stage of work is ongoing. Also see Porter et al. (2017) for a good summary of existing
work on this latter problem, along with a good comparison of the methodology.
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Figure 3: (a) Cliff face estimator for the school district effect on house prices per square
foot between district 27 and district 19, with 95% credible envelope. The left axis is in the
scale of log prices per square foot; positive values correspond to houses near the border being
more expensive in district 19 than 27. The right axis shows the corresponding ratio of the
price of a house near the border in district 19 over its price in district 27. A few draws from
the posterior are shown in lighter color to show the posterior correlations between sentinels.
Note the decorrelation from sentinels 77 to 78, and 84 to 85, where the border crosses the
water from Long Island to islands in Jamaica Bay. These islands are sparsely populated, and
the width of the envelope becomes correspondingly higher. (b) The map of sentinels, evenly
spaced along the border between school districts 27 and 19. The northernmost sentinel
(shown as a blue circle in both plots) has index 1, while the last sentinels (shown in yellow)
is on Rulers Bar Hassock.

5.3 Average Log-Price Increase

The cliff face Figure 3 shows a negative treatment effect everywhere along the border, which

can be averaged by the estimators we developed in Section 3. Our two recommended es-

timators, based on inverse-variance weighting and finite-population projection, yield LATE

estimates of −0.19 and −0.18 respectively, which corresponds to an almost 20% increase in

property prices going from district 19 to district 27. By contrast, treating each district and

building class as a fixed effect in an ordinary least squares (OLS) model yields a treatment
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Figure 2: Cliff face estimator for the school district effect on house prices per square foot
between district 27 and district 19, with 95% credible envelope. The left axis is in the scale
of log prices per square foot; positive values correspond to houses near the border being
more expensive in district 19 than 27. The right axis shows the corresponding ratio of the
price. (b) The map of sentinels used to estimate impacts along the boundary, evenly spaced.
The northernmost sentinel (shown as a blue circle in both plots) has index 1, while the last
sentinels (shown in yellow) is on Rulers Bar Hassock.
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