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Background / Context:  

Description of prior research and its intellectual context. 

 

In randomized control trials (RCTs) of education interventions, random assignment is often 

performed at the group level (such as a school or classroom) rather than at the student level. A 

common challenge for these clustered designs is to obtain sample sizes with sufficient statistical 

power to detect target average treatment effects within study resources. Power is a concern 

because standard errors of estimated impacts under clustered designs must be inflated to account 

for the correlation of outcomes between students in the same clusters (Donner and Klar, 1997; 

Hedges, 2004; Schochet, 2008).  

 

Estimating impacts using regression models that control for baseline covariates is an effective 

and commonly-used approach for increasing precision under clustered designs (Raudenbush, 

1997; Bloom et al., 1999; Schochet, 2008). The use of covariates—such as baseline values of the 

primary outcomes—can primarily increase precision for these designs by explaining the 

variation in mean outcomes between clusters. Accordingly, a critical design issue for clustered 

designs is the selection of covariates, which is especially complex for studies that collect and 

analyze data at the individual level. In these cases, there could be more candidate baseline 

covariates than clusters, which adds complexity because the degrees of freedom for hypothesis 

testing for clustered RCTs are based on the number of clusters, not individuals.    

 

One way to address the covariate selection problem is to pre-specify covariates in RCT registries 

and design documents prior to data analysis, for example, using prior information about the 

strength of outcome-covariate relationships. This approach has been recommended by authors 

across a range of fields (see, for example, Raab et al., 2000; Senn, 1994; Pocock et al., 2002; 

Heinz et al., 2017; European Medicines Agency, 2013). Pre-specification has the advantage that 

it yields impact estimates with correct Type 1 errors across repeated samplings, is fully 

replicable, and avoids the criticism that covariates were selected to obtain “favorable” findings. 

  

Major RCT registries across research areas, however, do not mandate that covariates be pre-

specified, such as in medicine (ClinicalTrials.gov), education (sreereg.icpsr.umich.edu), and 

economics (socialscienceregistry.org). Similarly, major evidence review clearinghouses (such as 

the What Works Clearinghouse) do not require pre-specification of covariates for RCTs to meet 

evidence standards. Accordingly, many RCT evaluations do not pre-specify covariates, instead 

selecting covariates using study data once the outcomes have been measured.  

 

An advantage of this data-driven selection approach is that it can improve precision by 

identifying strong outcome-covariate relationships that may have been unanticipated. However, 

there are drawbacks. First, this approach can suffer from the criticism that model covariates and 

their functional forms were selected to yield favorable findings. Second, standard error 

estimation is complicated by the need to account for the randomness of the covariate selection 

process across replications (Berk et al., 2013; Lee et al., 2014).       

 

 



Purpose / Objective / Research Question: 

Description of the focus of the research. 

This paper discusses a data-driven approach for selecting amongst candidate covariates for 

clustered RCTs that maintains key advantages of the pre-specification approach. We adapt 

commonly-used Least Absolute Shrinkage and Selection Operator (Lasso) procedures for 

covariate selection (Tibshirani, 1996) to design-based estimators (Schochet, 2013, 2018) that we 

show are conductive to the Lasso framework.  We focus on finite-population (FP) design-based 

estimators, where potential outcomes and covariates are assumed fixed for the study, rather than 

the super-population (SP) model, typically the focus of the covariate selection literature. As 

shown in the paper, the use of the FP model allows us to fix the covariate selection process 

across replications, thereby simplifying standard error estimation.     

 

After presenting the theory, the paper presents results from simulations to quantify the extent to 

which the procedure can recover the “true” model covariates (those with nonzero coefficients). 

The simulations also examine Type 1 errors of the estimated impacts. The paper also presents 

results from an empirical analysis using clustered RCT data from the multi-site Social and 

Character Development (SACD) Evaluation (SACD Research Consortium, 2010) to demonstrate 

how the procedure can substantially improve precision without sacrificing technical rigor. 

The paper contributes to the literature in several ways. First, it provides a framework for 

covariate selection for clustered RCTs using non-parametric design-based estimators rather than 

model-based HLM (random effects) estimators discussed in the literature (see, for example, 

Belloni et al., 2014; Bondell et al, 2010; Lin et al., 2013). Second, it provides consistent impact 

estimators for clustered RCTs that are likely to improve precision relative to the pre-specification 

approach, while decoupling covariate selection from impact estimation to improve replicability 

and transparency. The procedure is simple to apply because it is sequential where (1) covariates 

are selected first using Lasso adapted to clustered designs and (2) the selected covariates are then 

used to estimate impacts and standard errors using FP design-based regression estimators. Our 

focus differs from the literature on Lasso methods to simultaneously estimate treatment effects 

and covariate parameters (shrunk towards zero) and efficient standard errors (see, for example, 

Bloniarz et al., 2015 and Ertefaie et al., 2015 for non-clustered designs and the above references 

for HLM models).  

 

The paper contributes to the conference theme, Practical Significance and Meaningful Effects: 

Learning and Communicating What Matters, because it presents easy-to-use, new methods to 

improve the precision of RCT impact findings that underlie any discussion of how to assess 

whether treatment effects matter. The methods are intended to increase the replicability and 

transparency of impact findings, thereby improving evaluation rigor and research practice.   

 

Statistical, Measurement, or Econometric Model:  

Description of the proposed new methods or novel applications of existing methods. 

To demonstrate our method, this section briefly summarizes design-based impact estimators for 

clustered RCT designs (following Schochet, 2013, 2018) and then discusses how this framework 

can be used to select covariates using Lasso.  



Design-based estimators for clustered RCTs. Consider an RCT design where M clusters are 

randomized to a treatment or control group and where data are collected on individuals. Under 

this design, the data generating process for the observed outcome for individual i  in cluster j                    

( ijy ) can be expressed as follows: 

(1) (1 ) (0),ij j ij j ijy T Y T Y  (1) 

where (1)ijY  is the potential outcome for individual i in the treatment condition, (0)ijY  is the 

potential outcome for the same individual in the control condition, and jT  is the treatment status 

indicator. Design-based theory is based on a rearrangement of (1) to produce a regression model 

with an error term defined by the randomization process. This model can be estimated using 

weighted least squares (WLS) with weights, ijw , where ijy  is regressed on an intercept, jT , and 

v baseline covariates, ijX . Importantly, in the FP framework, the only source of randomness is 

jT , as (1)ijY , (0)ijY , and ijX are assumed fixed. This means that study results are assumed to 

pertain to the study sample only (for example, volunteer schools) and not more broadly. 

The resulting WLS estimator of the average treatment effect (ATE) is consistent and 

asymptotically normal as M approaches infinity. Further, the ATE variance estimator is based 

on regression residuals averaged to the cluster level, with separate additive terms for the 

treatment and control groups. Intuitively, the model is estimated using the individual data, but 

standard errors are calculated using residual sums of squares based on cluster-level residuals.  

The above results hold for any choice of baseline covariates as long as the number of covariates

( )v  yield sufficient degrees of freedom for hypothesis testing ( 2)M v . In practice, however, 

rigorous data-driven selection procedures are needed to select amongst the *v candidate 

covariates (especially if *v is large), while at the same time avoiding “favorability” bias and 

overfitting. Further, adopting methods that fix the selection process across replications can 

facilitate standard error estimation. Next, we discuss our approach to satisfy these goals.    

Lasso for clustered designs.  The paper uses Lasso (Tibshirani, 1996; Efron et al., 2004) for 

covariate selection because it aligns with the design-based framework. Lasso is a commonly-

used penalized regression approach that selects covariates by shrinking some regression 

coefficients to zero. Lasso, which was developed for non-clustered designs, estimates 

coefficients by minimizing a least squares objective subject to the constraint that the sum of the 

absolute values of the model coefficients is bounded above by some positive number. 

 

In our context, Lasso can be adapted to the design-based framework for clustered designs by 

minimizing the following penalized loss function using data averaged to the cluster level:  
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where 
*

jWy and
*

jWx are cluster-level outcomes and covariates, standardized to have mean 0 and 

variance 1; 
*

jw  are weights scaled to sum to 1; γ is the parameter vector; and  controls the 

amount of regularization (shrinking). The weights can be set to 1 (to weight clusters equally), to 

cluster sample sizes (to weight individuals equally), or other values. As  increases, more 

shrinking occurs and more parameter estimates are set to 0 (that is, omitted from the model).  

 

A critical feature of our approach is that we exclude the treatment indicator, jT , from the loss 

function in (3). Thus, the approach identifies predictive covariates that average across the two 

research groups. In the FP model, the only source of randomness is due to jT (from reallocations 

of the sample to the treatment and control groups). Thus, for a given , our approach fixes the 

covariate selection process across replications, and decouples estimation of the treatment effect 

from covariate selection (building off a similar idea proposed by Tsiatis et al., 2000 in a different 

context who recommend separate models be estimated for the two research groups).   

 

Relatedly, the objective function in (3) only selects covariates based on the strength of 

relationships with the outcome and not with jT .  This is because in RCTs, selecting covariates 

that are correlated with jT  but not with the outcome variable yields upwardly biased standard 

error estimates (Raab et al., 2000; Ertefaie et al., 2015; Koch et al., 2018).    

  

Cross-validation (CV) can be used to select , for example, by partitioning the data into 5 

random groups for training and validation (5-fold CV). A complication with this approach is that 

different random partitions of the sample could yield different covariate selections, which could 

lead to randomness in the Lasso procedure that we are trying to avoid. Thus, the paper presents a 

method to address this issue where Lasso is run a pre-specified number of times (detailed in the 

paper) and the most common selected covariate set across replications is identified to ensure the 

true model is identified with a high probability. Another approach is to use jack-knife (leave-

one-out) CV methods that will not vary across replications, which could also be suitable for 

designs with a small number of clusters where 5-fold CV is not practical.  

 

The paper also discusses a variant of Lasso—adaptive Lasso (Zou, 2006)—which penalizes 

coefficients differently based on first-stage coefficient estimates (for example, from ridge 

regression). This approach has been shown to have better asymptotic properties in recovering the 

true model for non-clustered designs. We conduct simulations using both approaches. 

 

Finally, note that the Lasso model in (3) could be estimated using individual-level data instead of 

cluster-level data. However, while this approach could increase precision slightly, it runs the risk 

of identifying covariates that primarily explain outcome variation across individuals within 

clusters (as opposed to between clusters), which is a problem because within-cluster covariates 

do not enter the variance formulas for the design-based impact estimators, and thus, do not 

improve precision. Thus, we apply (3) using cluster-level data to avoid this possibility and to 

ensure we identify covariates that explain the variation in mean outcomes between clusters. 

 

Impact estimation.  After the Lasso procedure has been conducted, the selected covariates can 

be used to estimate impacts and standard errors using the design-based estimators discussed 



earlier. Because covariate selection under our FP framework is fixed (along with the outcomes 

and covariates), the approach avoids the need to adjust for randomness in the selection process. 

Fixing the selection process across replications for the SP model would be more difficult, 

because outcomes and covariates would also vary across replications. 

  

Our approach does not use Lasso to simultaneously estimate treatment effects and covariate 

parameters. Rather, our sequential approach uses the fact that in the design-based framework, 

covariates do not enter the “true” data generating process underlying experiments (shown in (1)), 

but are ancillary. Stated differently, the design-based approach does not depend on the “true” 

relationship linking outcomes and covariates (unlike model-based estimators). Thus, our 

approach selects predictive covariates in the first stage that are independent of treatment status, 

and then uses these covariates to obtain consistent design-based estimators to improve precision 

relative to the pre-specification approach (but the estimators may not be fully efficient).  

 

Usefulness / Applicability of Method:  

Demonstration of the usefulness of the proposed methods using hypothetical or real data.  

 

We believe that the methods discussed in the paper can improve the process of selecting 

covariates to estimate treatment effects for commonly-used clustered RCTs in the education 

field. The methods are easy to apply using existing software to estimate Lasso models (for 

example, using R, Stata, or SAS) and to then estimate impacts using design-based estimators (for 

example, using RCT-YES). Our hope is that education researchers will consider using these 

methods in the future, and conduct research to improve them.  

Conclusions:  

Description of conclusions, recommendations, and limitations based on findings. 

 

Early simulation results suggest that the Lasso procedure using (3) is able to recover the true 

model covariates reasonably well based on standards found in the literature. The simulations 

suggest also that our sequential method for estimating impacts and their standard errors using the 

design-based estimators with Lasso-generated covariates yields Type 1 errors near nominal 

levels. Finally, early empirical analysis results using the SACD data show that our method yields 

considerable precision gains relative to an approach based on the pre-specification of a small 

number of pretest covariates only. Thus, initial results suggest that the approach shows promise.  

 

 


